Biocapacity supply and demand in Northwestern China: a spatial appraisal of sustainability

03 October 2011

Integrating spatial analysis with the supply and demand of biocapacity is critical for the sustainable development of regional eco-economic systems. Previous studies have focused on the temporal analysis of biocapacity at broad geographical scales, but lacked the systematic spatial realization at fine scales. An improvement is proposed of this conventional methodology of the ecological footprint by incorporating landuse data derived from high-resolution remote-sensing images into the calculation of biocapacity supply at regional, provincial and county levels in Northwestern China in 2000. The spatial heterogeneity and its effect on the biocapacity supply were systematically revealed for this region. First, the biocapacity supply declined from the east (the Guanzhong Basin and the Loess Plateau) to the middle (the Qaidam Basin and the Turpan Basin), and turned to rise from the middle to the west (the northwest of the Xinjiang Uygur Autonomy). Second, although the gap between biocapacity supply and demand resulted in a small ecological deficit at the regional level, a large ecological deficit was observed at the provincial and county levels, highlighting an unsustainable situation for some of the sub-regions. Importantly, a power law relationship was unveiled between the biocapacity supply and population density, suggesting that (i) the biocapacity supply as a critical indicator could reflect the intensity of human exploitation on local biophysical resources and (ii) humans tend to have a preference to inhabit those areas with high biological productivity. These results provide opportunities to enhance policy development by central and local governments as part of the long-term Great Western Development Strategy of China.