Comparing geographic area-based and classical population-based incidence and prevalence rates, and their confidence intervals

Access full-text article here

Tags:

Peer-Reviewed Research
  • SDG 3
  • Abstract:

    To quantify the HIV epidemic, the classical population-based prevalence and incidence rates (P rates) are the two most commonly used measures used for policy interventions. However, these P rates ignore the heterogeneity of the size of geographic regionwhere the population resides. It is intuitive that with the sameP rates, the likelihood for HIV can be much greater to spread in a population residing in a crowed small urban area than the same number of population residing in a large rural area. With this limitation, Chen and Wang (2017) proposed the geographic area-based rates (G rates) to complement the classical P rates. They analyzed the 2000–2012 US data on new HIV infections and persons living with HIV and found, as compared with other methods, using G rates enables researchers to more quickly detect increases in HIV rates. This capacity to reveal increasing rates in a more efficient and timely manner is a crucial methodological contribution to HIV research. To enhance this newly proposed concept of G rates, this article presents a discussion of 3 areas for further development of this important concept: (1) analysis of global HIV epidemic data using the newly proposed G rates to capture the changes globally; (2) development of the associated population density-based rates (D rates) to incorporate the heterogeneities from both geographical area and total population-at-risk; and (3) development of methods to calculate variances and confidence intervals for the P rates, G rates, and D rates to capture the variability of these indices.