Particle bonding mechanism in CGDS-a three-dimensional approach

Access full-text article here

Tags:

Peer-Reviewed Research
  • SDG 13
  • SDG 12
  • Abstract:

    Abstract: Cold gas dynamics spray (CGDS) is a surface coating process using highly accelerated particles to form the surface coating by high speed impact of the particles. In the CGDS process, metal particles of generally 1-50 μm diameter is carried by a gas stream in high pressure (typically 20-30 atm) through a DE Laval type nozzle to achieve supersonic flying so as to impact on the substrate. Typically, the impact velocity ranges between 300 and 1200 m/s in the CGDS process. When the particle gains its critical velocity, the minimum in-flight speed at which it can deposit, adiabatic shear instabilities will occur. Herein, to ascertain the critical velocities of different particle sizes on the bonding efficiency in CGDS process, three-dimensional numerical simulations of single particle deposition process were performed. In the CGDS process, one of the most important parameters which determine the bonding strength with the substrate is particle impact temperature. Bonding will occur when the particle’s impacting velocity surpass the critical velocity, at which the interface can achieve 60 % of melting temperature of particle material (Ref 1). Therefore, critical velocity should be a main parameter on the coating quality. The particle critical velocity is determined not only by its size, but also by its material properties. This study numerically investigate the critical velocity for the particle deposition process in CGDS. In the present numerical analysis, copper (Cu) was chosen as particle material and aluminum (Al) as substrate material for this study. The impacting velocities were selected between 300 m/s and 800 m/s increasing in steps of 100 m/s. The simulation result reveals temporal and spatial interfacial temperature distribution and deformation between particle(s) and substrate. Finally, comparison is carried out between the computed results and experimental data.