Chemical and structural characterization of char development during lignocellulosic biomass pyrolysis

Access full-text article here


Peer-Reviewed Research
  • SDG 13
  • SDG 12
  • SDG 7
  • Abstract:

    The chemical and structural changes of three lignocellulosic biomass samples during pyrolysis were investigated using both conventional and advanced characterization techniques. The use of ATR-FTIR as a characterization tool is extended by the proposal of a method to determine aromaticity, the calculation of both CH2/CH3 ratio and the degree of aromatic ring condensation ((R/C)u). With increasing temperature, the H/C and O/C ratios, XA and CH2/CH3 ratio decreased, while (R/C)u and aromaticity increased. The micropore network developed with increasing temperature, until the coalescence of pores at 1100 °C, which can be linked to increasing carbon densification, extent of aromatization and/or graphitization of the biomass chars. WAXRD-CFA measurements indicated the gradual formation of nearly parallel basic structural units with increasing carbonization temperature. The char development can be considered to occur in two steps: elimination of aliphatic compounds at low temperatures, and hydrogen abstraction and aromatic ring condensation at high temperatures