A numerical study of bioinspired nacre-like composite plates under blast loading

25 March 2015

In this paper, a multi-layered composite inspired by the hierarchical structure of nacre and made of layers of aluminium alloy AA 7075 bonded with toughened epoxy resin is introduced for blast resistant applications. The performance of the proposed nacre-like 3.3-mm and 5.4-mm thick composite plates, made of 1.1-mm thick AA 7075 layers, under localised impulsive loading was numerically studied. The epoxy material was modelled using user-defined interface cohesive elements that properly take into account both strength and toughness enhancements under compression. As compared to bulk plates, the improvement in blast resistance performance was numerically observed in the nacre-like plates, which required larger loads to reach the onset of failure. In addition, a reduction of the peak velocity and maximum deflection of the back face was observed for the nacre-like plates. This improvement is explained by the hierarchical structure facilitating a globalized energy absorption by inter-layer interlocking, delamination and friction.