Performance evaluation of a high-throughput microchannel reactor for ammonia decomposition over a commercial Ru-based catalyst

11 August 2016

In this work, the prospect of producing hydrogen (H2) via ammonia (NH3) decomposition was evaluated in an experimental stand-alone microchannel reactor wash-coated with a commercial Ruthenium-based catalyst. The reactor performance was investigated under atmospheric pressure as a function of reaction temperature (723–873 K) and gas-hourly-space-velocity (65.2–326.1 Nl gcat−1 h−1). Ammonia conversion of 99.8% was demonstrated at 326.1 Nl gcat−1 h−1 and 873 K. The H2 produced at this operating condition was sufficient to yield an estimated fuel cell power output of 60 We and power density of 164 kWe L−1. Overall, the microchannel reactor considered here outperformed the Ni-based microstructured system used in our previous work