The complexity of translationally-invariant low-dimensional spin lattices in 3D

14 Jul 2017

In this theoretical paper, we consider spin systems in three spatial dimensions and consider the computational complexity of estimating the ground state energy, known as the local Hamiltonian problem, for translationally invariant Hamiltonians. We prove that the local Hamiltonian problem for 3D lattices with face-centered cubic unit cells and 4-local translationally invariant interactions between spin-3/2 particles and open boundary conditions is QMAEXP-complete, where QMAEXP is the class of problems which can be verified in exponential time on a quantum computer. We go beyond a mere embedding of past hard 1D history state constructions, for which the local spin dimension is enormous: even state-of-the-art constructions have local dimension 42. We avoid such a large local dimension by combining some different techniques in a novel way. For the verifier circuit which we embed into the ground space of the local Hamiltonian, we utilize a recently developed computational model, called a quantum ring machine, which is especially well suited for translationally invariant history state constructions. This is encoded with a new and particularly simple universal gate set, which consists of a single 2-qubit gate applied only to nearest-neighbour qubits. The Hamiltonian construction involves a classical Wang tiling problem as a binary counter which translates one cube side length into a binary description for the encoded verifier input and a carefully engineered history state construction that implements the ring machine on the cubic lattice faces. These novel techniques allow us to significantly lower the local spin dimension, surpassing the best translationally invariant result to date by two orders of magnitude (in the number of degrees of freedom per coupling). This brings our models on par with the best non-translationally invariant construction