Reproductive status‐dependent kisspeptin and RFamide‐related peptide (Rfrp) gene expression in female Damaraland mole‐rats

10 Apr 2018

Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean mammals that exhibit a high reproductive skew. Reproduction is monopolised by the dominant female of the group, whereas subordinates are physiologically suppressed to the extent that they are anovulatory. In these latter animals, it is assumed that normal gonadotropin‐releasing hormone secretion from the hypothalamus is disrupted. The RFamide peptides kisspeptin (Kiss1) and RFamide‐related peptide‐3 (RFRP‐3) are considered as potent regulators of gonadotropin release. To assess whether these neuropeptides are involved in the mechanism of reproductive suppression, we investigated the distribution and gene expression of Kiss1 and Rfrp by means of in situ hybridisation in wild‐caught female Damaraland mole‐rats with different reproductive status. In both reproductive phenotypes, substantial Kiss1 expression was found in the arcuate nucleus and only few Kiss1‐expressing cells were detected in the anteroventral periventricular nucleus (AVPV), potentially as a result of low circulating oestradiol concentrations in breeding and nonbreeding females. Rfrp gene expression occurred in the dorsomedial nucleus, the paraventricular nucleus and the periventricular nucleus. While in female breeders and nonbreeders, plasma oestradiol levels were low and not significantly different, quantification of the hybridisation signal for both genes revealed significant differences in relation to reproductive status. Reproductively active females had more Kiss1‐expressing cells and a higher number of silver grains per cell in the arcuate nucleus compared to nonreproductive females. This difference was most pronounced in the caudal part of the nucleus. No such differences were found in the AVPV. Furthermore, breeding status was associated with a reduced number of Rfrp‐expressing cells in the anterior hypothalamus. This reproductive status‐dependent expression pattern of Kiss1 and Rfrp suggests that both neuropeptides play a role in the regulation of reproduction in Damaraland mole‐rats. Enhanced long‐term negative feedback effects of oestradiol could be responsible for the lower Kiss1 expression in the arcuate nucleus of reproductively suppressed females.