Pulsed Molecular Optomechanics in Plasmonic Nanocavities: From Nonlinear Vibrational Instabilities to Bond-Breaking

27 Feb 2018

Small numbers of surface-bound molecules are shown to behave as would be expected for opto-mechanical oscillators placed inside plasmonic nano-cavities that support extreme confinement of optical fields. Pulsed Raman scattering reveals superlinear Stokes emission above a threshold, arising from the stimulated vibrational pumping of molecular bonds under pulsed excitation shorter than the phonon decay time, and agreeing with pulsed optomechanical quantum theory. Reaching the parametric instability (equivalent to a phonon laser or ‘phaser’ regime) is however hindered by motion of gold atoms and molecular reconfiguration at phonon occupations approaching unity. We show how this irreversible bond breaking can ultimately limit the exploitation of molecules as quantum mechanical oscillators, but accesses optically-driven chemistry.