Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts

25 Jul 2017

BACKGROUND : Free radicals have been implicated in the pathogenesis of diverse metabolic disorders including cancer. Therefore, fighting against free radicals has become an important strategy in the prevention or treatment of such diseases, in addition to direct or indirect anticancer chemotherapy. Sarcocephalus pobeguinii has been used traditionally to treat various diseases in which excess production of free radicals is implicated, warranting investigation of its free radical scavenging, anticancer and anti-inflammatory activity. METHODS : In the present study, extracts from leaves, fruits, roots and bark of Sarcocephalus pobeguinii were evaluated on four human cancer cell lines (MCF-7, HeLa, Caco-2 and A549 cells) and a non-cancerous cell line for their antiproliferative potential. The cells were incubated with the plant extracts for 48 h at 37 °C in a 5% CO2 humidified environment and their cytotoxic effect was determined using the tetrazolium-based colorimetric (MTT) assay. The radical inhibition was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging techniques. The nitric oxide inhibitory activity was determined using LPS-activated RAW 264.7 macrophages. The correlation between radical scavenging capacity and antiproliferative activity was also analysed. RESULTS : The extract from leaves of Sarcocephalus pobeguinii (LSP) exhibited the highest cytotoxic effect on all four of the human cancer cell lines but with some cytotoxicity to the normal Vero cells. However, the LSP extract had the best selectivity index, ranging from 3.15 to 18.28. Also, antioxidant and anti-inflammatory assays indicated that the LSP extract had the highest radical scavenging capacity of all the extracts. A positive linear correlation was found between free radical scavenging ability and antiproliferative activity against the four cancer cell lines, with the highest correlation factor (R2 = 0.9914) obtained between DPPH inhibition and antiproliferative activity against A549 cells. CONCLUSIONS : The high selectivity index of the Sarcocephalus pobeguinii leaf extract indicates the potential of using this extract in cancer therapy. Furthermore, the positive correlation between free radical scavenging and antiproliferative activity suggests that the radical scavenging capacity of extracts may contribute to a prediction of their anticancer property.