Materials data validation and imputation with an artificial neural network

15 May 2018

We apply an artificial neural network to model and verify material properties. The neural network algorithm has a unique capability to handle incomplete data sets in both training and predicting, so it can regard properties as inputs allowing it to exploit both composition-property and property-property correlations to enhance the quality of predictions, and can also handle a graphical data as a single entity. The framework is tested with different validation schemes, and then applied to materials case studies of alloys and polymers. The algorithm found twenty errors in a commercial materials database that were confirmed against primary data sources.