Match-Making Reactors to Chemistry: A Continuous Manufacturing-Enabled Sequence to a Key Benzoxazole Pharmaceutical Intermediate

25 Jan 2018

The focus of this study was to develop a chemical reaction sequence toward a key benzoxazole building block, required for clinical manufacturing of a lead candidate in the respiratory disease area. The chemistry consisted of initial low-temperature reactions with an organometallic reagent to generate the benzoxazole core, and was followed by noncryogenic transformations toward a sulfonamide substituent. With particular interest in continuous-flow manufacturing we attempted to integrate the entire sequence on lab scale. Subsequent in-depth process research, supported by PAT and calorimetry studies, revealed the critical parameters of each step, leading to a more rational attribution of mode of operation: flow, batch, or semibatch. Two bench-scale cascades of continuously stirred tank reactors (CSTRs) were constructed to meet the challenge of high exothermicity and solids formation and were key to smoothly upscaling the chemistry to deliver 17 kg of benzoxazole in superior yield, quality, and robustness.