Gauge Theory on Projective Surfaces and Anti-self-dual Einstein Metrics in Dimension Four

19 Jun 2018

Given a projective structure on a surface (Formula presented.), we show how to canonically construct a neutral signature Einstein metric with non-zero scalar curvature as well as a symplectic form on the total space M of a certain rank 2 affine bundle (Formula presented.). The Einstein metric has anti-self-dual conformal curvature and admits a parallel field of anti-self-dual planes. We show that locally every such metric arises from our construction unless it is conformally flat. The homogeneous Einstein metric corresponding to the flat projective structure on (Formula presented.) is the non-compact real form of the Fubini–Study metric on (Formula presented.). We also show how our construction relates to a certain gauge-theoretic equation introduced by Calderbank.