Experimental insights on the development of buoyant plumes injected into a porous media

14 Sep 2017

We describe a series of new laboratory experiments which examine the rise of a two-dimensional buoyancy-driven plume of freshwater through a porous layer initially saturated with aqueous saline solution. Measurements show that the plume head accounts for a constant fraction of about 0.7 of the buoyancy supplied at the source and that it grows as it rises through the porous layer. However, the morphology of the plume head becomes increasingly complex as the ratio of the injection speed to the buoyancy rise speed increases, with the fluid spreading laterally and developing localized buoyant fingers which intermingle with the ambient fluid. Behind the plume head, a tail of nearly constant width develops providing a pathway from the source to the plume head. These starting plume dynamics may be relevant for buoyancy-driven contaminant dispersal and also for the convection which develops during CO2 sequestration as CO2 dissolves into aquifer water.