Estimation of the coherence time of stochastic oscillations from modest samples

02 Dec 2013

‘Quasi-periodic’ or ‘solar-like’ oscillations can be described by three parameters – a characteristic frequency, a coherence time (or ‘quality factor’) and the variance of the random driving process. This paper is concerned with the estimation of these quantities, particularly the coherence time, from modest sample sizes (observations covering of the order of a hundred or fewer oscillation periods). Under these circumstances, finite sample properties of the periodogram (bias and covariance) formally invalidate the commonly used maximum-likelihood procedure. It is shown that it none the less gives reasonable results, although an appropriate covariance matrix should be used for the standard errors of the estimates. Tailoring the frequency interval used, and oversampling the periodogram, can substantially improve parameter estimation. Maximum-likelihood estimation in the time-domain has simpler statistical properties, and generally performs better for the parameter values considered in this paper. The effects of added measurement errors are also studied. An example analysis of pulsating star data is given.