Anomalous diffusion in a dynamical optical lattice

27 Mar 2018

Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-Andr\'e model which can cause localization of single-particle wavefunctions. We show that atomic wavepackets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between super-diffusive and sub-diffusive regimes. This anomalous diffusion arises from an interplay between quantum localization and quantum fluctuations of the cavity field.